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Abstract

Biaxial deformation of freely jointed chain molecules in a solid state is considered. Biaxial molecular orientation is directly related to the
applied deformation. Segmental orientation and stress are considered using non-Gaussian inverse Langevin statistics of the chain end-to-end
vectors. Padé approximation and series expansion of the inverse Langevin function are used.

Global orientation of chain segments and stress are analyzed for affine biaxial deformation of non-Gaussian chains. Molecular anisotropy

D

is characterized by the norm of the average orientation tensor,

, and the global anisotropy of the stress tensor is characterized by the norm

IP||. Non-linear behavior of the orientation vs. stress characteristics for isochoric uniaxial deformation, calendering (A; = 1) and biaxial

deformation are discussed. © 2002 Published by Elsevier Science Ltd.
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1. Introduction

Deformation of polymer systems composed of flexible
chains leads to orientation of individual chain segments,
affects free energy and stress. Molecular orientation is of
considerable interest for uniaxially as well as biaxially
deformed polymers, as related to mechanical behavior and
structure. Stress-induced morphological transitions during
biaxial (thermoforming, film blowing) or uniaxial deforma-
tion (fiber spinning) provide important components of
process modeling.

We will consider systems of chain molecules subjected to
biaxial deformation in a solid or fluid state. In a solid state,
orientation produced by cold or hot drawing, thermoform-
ing, etc. is controlled, first, by deformation applied to the
material. Contribution of relaxation of the molecular orien-
tation during deformation is much reduced due to deforma-
tion stresses transmitted in such systems to the chain ends in
the case of crosslinked topology or strong viscous inter-
actions in uncrosslinked systems. In a cross-linked, purely
elastic system in a rubbery state, the extent of reversible
deformation can be correlated with average orientation
and anisotropy of physical properties. In the uncross-linked
solids showing plastic behavior (e.g. strongly interacting
polymer chains in the bulk) the deformation is irreversible,
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but frozen orientation is maintained long after deformation
rate and stress are reduced to zero.

On the contrary, orientation produced in a viscous fluid
(e.g. melt spinning, film blowing and film casting) is
controlled by deformation rate or stress. In more complex,
viscoelastic materials, effects of deformation and deforma-
tion rate are superimposed one on another. The comparison
of orientation in Nylon 6 fibers, either cold-drawn in a
plastic state (orientation controlled by draw ratio) or
melt-spun (flow orientation controlled by spinning speed
or spinning stress) [1] seem to confirm this picture. At the
same time, melt spinning of highly viscoelastic poly-
ethylene [2] reveals both, deformation (spin—draw ratio)
and deformation rate (spinning speed) effects.

In the present paper, we will analyze the molecular orien-
tation behavior of polymers subjected to isochoric, biaxial
deformation in a solid state. Orientation in steady, viscous
flow as well as in transient viscoelastic effects will be
treated in separate papers.

Characterization and development of segmental orienta-
tion in flexible chain polymers subjected to biaxial deforma-
tion was investigated experimentally [3-15] and
theoretically [5,7,12,16,17] by several authors. In theo-
retical studies of the orientation development, an assump-
tion of finite extensibility of real chains is required, in
particular at higher deformations. Nagai formulation [18],
offering series expansion approach for the segmental orienta-
tion function in flexible chain polymers, was adopted for
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biaxial orientation in cross-linked systems by the authors
[17]. The approach resulted in a series expansion theory
of biaxial orientation in affinely deformed networks.

In our paper, we present a closed-formula theory for
affinely deformed systems, based on Padé approximation
of the inverse Langevin distribution of chain end-to-end
vectors proposed by Cohen [19]. Series expansion formula-
tion of the orientation characteristic, resulting from the
expansion of the inverse Langevin function, is also presented.

2. Orientation and stress in a freely-jointed chain
macromolecule

According to Kuhn and Griin [20], equilibrium distribu-
tion of end-to-end vectors, h, within a freely-jointed chain
composed of N statistical Kuhn segments, reads

(i)
const. exp

Wo(h) o

h/Na
const. exp[ -N LP*(x)dx] (1)
0

where Fy; is the entropy-controlled elastic free energy of the
chain, and a, the fixed length of the segment. ¥ *(x) is the
inverse Langevin function which in the form of the series
expansion reads
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The expansion (2) converges slowly, in particular for x >
1/2. A (2,3) Padé approximation proposed by Cohen [19]
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offers a closed formula applicable in the entire range of the
variable x € (0, 1), including the asymptotic behavior
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The distribution W, for undeformed systems is spherically
symmetric. External orienting forces applied to the system
change this symmetry.

126117

Orientation distribution of segments around the end-to-
end vector h exhibits cylindrical symmetry, and is charac-
terized by the function of the angle a between direction of
the segment, a, and the vector h [21]
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wyo can be considered as the conditional probability of find-
ing the segment with orientation « in the chain with end-to
end distance h and the number of segments N.

In the range of small chain extensions, h/Na < 1, the
distribution (7) reduces to

wyo(cos a; h,N) =

1 3h
wgo(cos a) = Hexp(mcos a) 8)

Orientation of segments within a single polymer chain is
represented by the tensor [21]

h
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which, in the limit of small extensions, #/Na < 1, reduces
to

3h®h
Ah) = - —— 10
() = 2 N (10)
and with the Padé approximation, to
2h @ h
Abh) = ———— 11
(h) AN — 1)

Note that in the range of small chain extensions, Eq. (11)
does not reduce to Eq. (10), although both formulae assume
zero values at zero end-to-end distance.

The number of chain configurations available at fixed
end-to-end distance, £, is proportional to equilibrium distri-
bution function, Wy(h). The configurational entropy of the
chain composed of N statistical segments reads

h/Na
S(h) = k In Wy(h) = Const — Nk L (x)dx (12)
0

Substituting the expansion (2) in Eq. (12), chain entropy
assumes the form
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which for the small extension, #/Na < 1, reduces to

3Nk ( h \?
S(h) = Const — T(%) (14)

and with the Padé formula to

1( h\? h \?
Scth) = Const—Nk[E(m) —ln(l — (%) )] (15)

It is evident that for #//Na < 1 Eq. (15) converges to the
Gaussian limit (14).

The elastic tension f between chain ends is collinear with
the end-to-end vector h and results as a gradient of the
entropy-controlled elastic free energy

h \h
f=VF,h)=—-TVSh) = _g < ) (16)
NaJh
The corresponding local stress tensor reads
1 kT ( h h®h
= —f®h=—|— )& 17
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where v, denotes the molecular volume of a single segment,
and Nv, the volume of a polymer chain. Using the expan-
sion formula (2) one obtains (from Egs. (16) and (17))
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In the limit of small deformations, Eq. (18) reduces to the
harmonic potential force between chain ends. Then, the
corresponding stress tensor reads

_ 3kT'h ®h

2
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In the Padé approximation, the stress tensor assumes the
following form

h 2
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Molecular orientation and stress tensors are coaxial, and
can be considered as functions of a single dyadic variable,
h ® h. It should be reminded that all powers of a dyadic
are coaxial

hQ®hy=r""Yh®h (22)
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and the orientation and stress tensors can be expanded in
power series of the dyadic h @ h
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Alternatively, the orientation tensor can be expanded in
power series of the dimensionless stress, (pvy/kT)

1 PVO 3 (pVO ) 1 ( pVO )
A — —
®=3%7 " 1sr ) " sis\ar

13 Pvo
4.
67375 ( kT ) 25)

and vice versa
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For the Gaussian limit, linear relation known as ‘stress-
optical’ or ‘elastooptical’ law is obtained
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3. A system of deformed macromolecules

From the distribution of chain end-to-end vectors, one can
predict the global orientation distribution of chain segments
in the system, wy(6, ¢). Integration of the distribution of
segments within a single chain, wy, (o), with the normalized
distribution of end-to-end vectors, W(h), yields global
orientation distribution of chain segments in the system

(6, ¢) = j”wsom)vv(h)d% 28)

where cos a = a-h/(ah) is defined by the scalar product of
the segment vector, a, and the end-to-end vector, h. 6, ¢
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denote the polar angles in an external coordinate system.
The global orientation distribution of segments is normal-
ized in the rotational space

”ws(o, @)sin 0d0de = 1 (29)

At a given moment of time, ¢, the distribution function
W(h, t) can be found from the continuity equation

w + diV[Wlio —D(VW+ Wvﬁ)] =0 (30)
at kT

where D is the diffusion coefficient, and F;(h), is the elastic
free energy of the chain. The gradient and divergence
operators concern the h-space. The convective velocity of
the end-to-end vector, lio, is related to flow characterized by
the imposed flow (deformation rate) tensor, Q

hy = Qh 31
1 T
Q= E(VV +Vvvh (32)
qi O O
Q=VVv=]0 g 0|
0 0 4 (33)

IQll= (@ Q" = (g1 + g2 + g™

where the axial velocity gradients g; are also the axial defor-
mation rates. For isochoric deformation we have tr Q =
g1+ q+g3=0.

Several solutions of the continuity Eq. (30) deserve
discussion. In the present paper, we analyze the effects of
affine deformation of chains in the solid state. In the rubbery
state, the affinity of deformation of chain end-to-end vectors
is a characteristic feature of the Gaussian network. Applica-
tion to non-Gaussian rubbery system can be considered as
an approximation. In an uncross-linked system, affine
deformation results from Eq. (30) as an asymptotic solution
at zero diffusion coefficient (infinite interchain friction
coefficient, see Section 4).

We should realize that for a fraction of chains with higher
end-to-end distances in the initial distribution, affine defor-
mation leads to end-to-end distances exceeding the chain
contour length. Fraction of such chains is higher, and the
affinity assumption is coarser, for higher deformations.
Nevertheless, an upper limit of validity of affine deforma-
tion assumption is considered in terms of deformation of a
chain with average dimensions. For a biaxial deformation,
the upper bound for affinity is defined from the condition of
full extension of a chain with an average end-to-end
distance <h2>(1)/ %2 in the initial state of the system [17].
Other deviations from affinity may result from the
non-Gaussian chain behavior in crosslinked systems at
equilibrium.

In the case of uncross-linked solids, affine deformation is

obtained in Section 4 as a direct consequence of very high
interchain friction forces and viscosity from the continuity
equation in the limit of zero diffusion coefficient, at finite
intrachain elastic force. Very high viscous interactions may
concern also shorter parts of chain macromolecules and, in
consequence, the assumption of affine deformation concerns
shorter length scale than the chain end-to-end distance. But
in such a case affine deformation of the chain portions
results in affine deformation of the end-to-end vector of
the entire chain macromolecule.

4. Distribution of polymer chains in a deformed uncross-
linked solid

Consider a system with a very low molecular mobility.
This is realized by strong intermolecular interactions which
create sort of a plastic medium with infinitely high viscosity.
Dividing Eq. (30) term-wise by the scalar measure of the
deformation rate tensor [|Q||, in the limit D/|Q||— 0 we
obtain the first order differential equation

% + WtrQ+ (Qh)y VW =0 (34)

Solution of Eq. (34), with the initial condition given by the
unperturbed equilibrium distribution

W, t=0) = Wyh) (35
can be presented in the form
W(h, 1) = exp[—tr(Qn)]Wo[exp(—Q)-h] (36)

The above solution is equivalent to the assumption that all
end-to-end vectors in the initial sample, h(z = 0), are
subjected to affine (linear) transformation with the same
time-dependent displacement gradient tensor A(z)

h(r) = A(®)-h(t = 0) 37

Affinity of deformation results from the fact that chains are
convected by uniform flow field in a diffusion-free medium.
At the same time, the affinity does not depend on whether
the chains are Gaussian or not.

The deformation gradient tensor corresponding to
diagonal deformation rate tensor is also diagonal and reads

A0 0
A(t) = exp(Qr) = 0 Mo O (38)
0 0 M@
where the time-dependent components
Ai(1) = exp(g;1) (39)

The distribution of chain end-to-end vectors in the deformed
sample can be expressed in terms of the time-dependent
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deformation tensor
No 0 0
FO=A"OAO=| 0 Mo o (40)
0 0 A
which yields
Wh,T) = (det ) "?Wy(h-T ~"'h) (41)

For isochoric deformation we have
det I'(t) = det[exp(tr Q)] = 1.

Using inverse Langevin form of the initial distribution
Wy(h), we obtain

W(h,T) = const.(det T") "2

(h-T " 'h)"?/Na
exp[ —NJ' i”"‘(x)dxil
0

with the normalization condition

(42)
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With the series expansion, Eq. (2), we obtain
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In the range of small deformations, Eq. (44) reduces to the
deformed Gaussian distribution
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and, in the non-linear range with the Pad¢ approximation

W, T) = const.(det ') 12

hr'h\" 1 hI'"'h
X(l - T) exp(‘zw 40
Orientation distribution of chain segments in the system
subjected to deformation I' is obtained from the integral
(28) with the appropriate forms of W(h) and wy(«).
Using linearized orientation distribution function (Eq. (8))

and the deformed Gaussian form of the distribution of end-
to-end vectors h (Eq. (45)) one obtains

1 3 ala
w69 = e 07 @)

0 and ¢ are polar angles of the segment vector a in an
external coordinate system

sin 6 cos ¢
a =a| sin #sin @ 48)

cos 6

Orientation-dependent exponent in Eq. (47) assumes the
form

ala

2

= ()\% cos® ¢ + A% sin’ cp)sin2 0+ )\% cos’ 6 (49)
a

5. Average behavior of deformed systems

To characterize the behavior of a system of chains
subjected to deformation, single chain characteristics such
as entropy, S(h), orientation tensor, A(h), and stress tensor,
p(h), should be averaged with actual distribution W(h) of
the end-to-end vectors. Average entropy, average orienta-
tion and stress tensors are calculated from the integrals

(S) = J J J'S(h)W(h)d3h (50)
(A) = J J JA(h)W(h)dSh (51)
® = [ | [powamdn (52)

Even moments of the end-to-end distance are obtained by
integration with the appropriate distribution, W(h)

"y = th”W(h)cPh (53)

The average end-to-end vector h, and force f, multiplied by
even powers of the end-to-end distance disappear

(W*"h) = (K*"f) = 0 (54)

and the average dyadics are obtained in the form
(P*"h @ h) = Jh2"h ® hW(h)d*h (55)

Using the ‘deformed’ distribution Eq. (41), the average
entropy per chain segment for an isochoric deformation,
det I' = 1, results in the form

% = Const — %tr(%) - 210|:Ztr<]5)2+(tr<;))2:|

3
- O(E) (56)
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and the average orientation and stress tensors:

SRR EOIRO)

(57)

2 3

oro Ty 1[2<£) +£tr<£)] + O(E) (58)
kT N 5 N N \N N

The average characteristics are expressed in terms of the
affine deformation tensor reduced by the number of
statistical segments within a chain, I'/N. The respective
deformation components, /\,-Z/N, characterize effective
molecular deformation.

Eqgs. (57) and (58) indicate that the average stress and
orientation tensors are collinear only in the first order
(linear) approximation.

Anisotropy of the system is characterized by the deviator
of the average orientation tensor, each principal component
of which, f;, describes the molecular orientation in the
direction of the ith axis

fi 00
D = dev(A) = (A) — %u(Aﬂ:% 0 f 0 (59)
0 0 f

The principal orientation factors read

fi = (An) = 5 (A + (A
fo= (A = 5 (AL + A (60)
fy= (A = 5 () + A

From the definition of the deviator it follows that
fith+tf=0 (61)

The norm of tensor D

D) = (@D = 2 (77 + 73+ 3) ()

is a measure of the system global anisotropy.
Similarly, the norm of the deviator of average stress
tensor

P = dev(p) = (p) ~ S up) ©)

reads
1
[P|| = [tr(PPT)]"? = tr((p)*) — 5(tr<p>)2
2
= [§(<P11>2 + () + (p33)

12
— puXpm) — (1 Xpsa) — @22>@33>)] (64)

and characterizes the intensity of anisotropic stress in the
system. |[P|| disappears for a purely hydrostatic stress

P11) = (P2) = P33)-

6. Discussion

We will consider isochoric, biaxial deformation with
components

1
>0 A >0, =t by =1 (65)

113
which in the uniaxial case reduces to

1
/\1 = Az = W (66)

The average entropy per a single chain segment, expressed
by the deformation components, assumes the form

N k 1 3k
QzConst——/\%-F/\%—i-—zz -
N 2N A2 20N
1 2 1 1
X )\‘1‘+X3‘+—+—(A%A§+—+—)]
[ A3 AN

1
- O( ¥ ) 67)
for isochoric biaxial deformation, and

2
@ = Const. — k ()\2 + —)
N 2N
3k 8 1
20N2 |:3/\3 )\2 + 4)\3:| O(F) (68)

for the isochoric uniaxial case.
The orientation factors for biaxial deformation read
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h=—-(fi +f) (71)

and for the uniaxial case, reduce to

1(, |1 4 . 4) (1)
= —(N- =)+ —[3M+rx-")+0[—
£ SN(3 /\3) 175N2( N N3

(72)

fi=hHh= _%f3 (73)

The first (Gaussian) term in Eq. (70), yields for the orienta-
tion factor f3

_ e 1w, 1
f3—5N[3 2(1+)\%)\§)] (74)

Behavior of the axial orientation factors fi and f; vs. elonga-
tion ratio A, at fixed values of the elongation ratio A is
shown in Figs. 1 and 2 for the system of non-Gaussian
chains subjected to isochoric, affine biaxial stretch. Stretch
ratios smaller than unity correspond to compression. The
plots are computed from the terms in Eq. (60) for chains
composed of N = 100 segments. Non-Gaussian distribution
of end-to-end vectors, Eq. (42), is used for the averaging
together with the Padé approximation of the inverse
Langevin function, Eq. (3).

The integration is performed within the range of physi-
cally allowed extensions of the chains. At full extension,
h/Na = 1, we have infinite values of the inverse Langevin
function, of its Padé approximation, and the retractive
elastic force between the chain ends tends to infinity. We
introduce an € margin which prevents the ratio #/Na from
approaching unity and eliminates the singularity from our
computations. We choose € = 0.001, a value which, on one
side, eliminates computational singularities, and affects the
results negligibly on the other. The chain full extension is
reduced to a slightly smaller value of W/Na=1— €=

0.20

0.15 4
0.10
0.05

0.00 T

-0 OSJ

Orientation factor, f,

Elongation ratio, 2,

Fig. 1. Axial orientation factor f; vs. elongation ratio A3, at fixed values of
the elongation ratio A; (indicated), computed from Eq. (60) for biaxial
affine deformation of non-Gaussian chains with the distribution of end-
to-end vectors given by Eq. (42), and Padé approximation for the inverse
Langevin function, N = 100.

0.20

0.154
0.10 H
0.05

0.00

Orientation factor, f,

-0.051

-0.10 T T T T

Elongation ratio, 2,

Fig. 2. Axial orientation factor f; vs. elongation ratio A3, at fixed values of
the elongation ratio A, (indicated) computed from Eq. (60) for biaxial affine
deformation of non-Gaussian chains. N = 100.

0.999. Other chains in the system, which do not approach
full extension, follow the scheme of affine deformation. We
should note that such a picture of affine deformation applies
for the deformation range determined by full extension of an
average chain, with end-to-end-distance equal to (h*)§” in
the unperturbed system. Then, our computations for the
system of chains composed of N = 100 statistical segments
apply for A} + A3 + 1/(\A;)> = 100. The inequality
defines the physical range of deformation.

As expected, the orientation factor f; (Fig. 1) assumes
larger values for larger elongation ratio A, but its values
are reduced by elongation in the perpendicular direction Aj;.
The decrease with increasing A3 is stronger at higher
deformations A; and A;. The tendency to level off the
plots is seen when the deformation approaches its physical
bounds given by the above inequality.

Negative values of the orientation factors indicate
domination of perpendicular orientation. It is predicted
that perpendicular alignment of segments (f; negative) can
be produced by compression, A; < 1. The stronger the
compression, the higher is the stretch ratio A;.

As evident from Fig. 2, the orientation factor f; increases
monotonically with increasing stretch ratio A; in the
extension, as well as in the compression ranges. At the
same time, f3 is reduced by perpendicular stretching, A; >
1. Comparison of slopes of the plots shown in Figs. 1 and 2
indicate stronger effect of the stretch deformation A3 on the
orientation factor f; than on f;. Similar conclusion was found
for infinitesimally small biaxial deformations in the series
expansion model [17].

Tendencies in the behavior of the axial orientation factors
in biaxial deformation predicted in our paper and by the
series expansion theory [17] are generally in a qualitative
agreement. However, the results shown in Ref. [17] are
limited to first- and second-order approximation in the
computations, and indicate significant differences between
different levels of approximation, in particular at high
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Orientation factor, f,

0.2 ’ . . . r . T .
2 -1 0 1 2 3

Deformation, [1,"~(% "+, ‘A, )2/N

Fig. 3. Axial orientation factor f; vs. deformation [A%/N - (A +
ACCAS 2N at fixed values of the elongation ratio A; (indicated)
computed from Eq. (60) for biaxial affine deformation of Gaussian and
non-Gaussian chains. N = 100.

deformations. For example, convergence of the axial
orientation factor f3 in Ref. [17] to the same value at differ-
ent transversal extensions A, with increasing A3, seems to
be an artifact of the second-order approximation. Such a
convergence is not predicted by our model (see Fig. 2).
Such an uncertainty related to different behavior at different
levels of approximation does not concern the closed-
formula approach.

The plot of f5 vs. [A3 — (A + A;*A52)/2)/N shown in
Fig. 3 reveals deviation of the predictions based on Gaussian
statistics from the more general non-Gaussian relation. The
linear single Gaussian plot for any A, A pair splits in the
case of non-Gaussian statistics into separate non-linear
plots, at fixed A, values. Significant deviation towards
much smaller values of the orientation factor is observed
for stretch ratios far from unity. However, within a range of
small deformations, the non-Gaussian f; values exceed
slightly the Gaussian once. Such a tendency in this deforma-
tion range is indicated by Eq. (70) where the first non-
Gaussian correction term enhances values obtained from
the linear one. At stronger deformations, the enhancement
is compensated by higher order terms, and the obtained
values drop below the Gaussian plot.

Global anisotropy of the system, characterized by the
scalar characteristic ||D||, Eq. (62), is shown in Fig. 4. The
plots indicate increase in the characteristic with increasing
stretch ratio in the extension range where the extension
exceeds the one in the transversal direction. Increase in
the characteristic in this extension range is steeper at
lower transversal extensions. This leads to intersections of
each plot in Fig. 4 with the others of higher transversal
extensions. The intersection indicates that effectivity of an
extension in production of the overall anisotropy can be
enhanced or weakened by the transversal extension. The
enhancement takes place when the transversal extension
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Fig. 4. Global orientation anisotropy characteristic ||DJ| vs. elongation ratio
A; at fixed values of the elongation ratio A; (indicated). Computed from
Eq. (62) for biaxial affine deformation of non-Gaussian chains. N = 100.

does not exceed, and the reduction when it does exceed
the current extension. The anisotropy characteristics are
less sensitive to the extension in the first range, and they
show very steep increase at strong compressions.

The average normal stress differences in biaxial deforma-
tion read

<AP(3’1)> = (p33) —{P11) = %()\% - /\%)

1 KT .4 1 s 1 (1)
+ (33— 5 -+ S )+0o( ) 5
5N2VO( g )\%) a)

(BPPD) = (p3) — () = N"—fo(A% -] )

1 kT (L, 3 b 1 (1)
(3 - 2 + - S )+0o[—) w6
5N2v0( oy T v) 79

and for the uniaxial case

J’_

(Ap) = (p) — pu1) = ]’;—TO(A% - i)

A3
1 kT (.., 4 1
+ - A+ — — ) +0[—= 77
5N2v0< P )\3) <N3) 70

Figs. 5 and 6 show the average normal stress differences,
(Ap®Yy and (Ap®?) plotted vs. elongation ratio As, at
different fixed values of A;. The plots are computed using
non-Gaussian distribution of end-to-end vectors. The stress
differences monotonically increase with increasing elonga-
tion ratios. The biaxial stress difference between the two
stretch directions, (Ap(3’l)>, is stronger than the stress
difference (Ap®?) in the plane perpendicular to the
deformation plane.



L. Jarecki, A. Ziabicki / Polymer 43 (2002) 2549-2559 2557

Stress difference, v,<ap”">/kT

-3 T T T

4

Elongation ratio, A,

Fig. 5. Reduced normal stress difference, vO(ApG’”)/kT, vs. elongation ratio
A3, at fixed values of the elongation ratio A (indicated). Computed from
Eq. (52) with the non-Gaussian distribution of chain end-to-end vectors,
Eq. (42), and the Padé approximation. N = 100.

Gaussian statistics imply normal stress difference
proportional to the difference of deformation coefficients,
XIN:

(Ap"“)vq Lo
T N()\i - )\j) (78)

The Gaussian approximation converges with the non-
Gaussian one in the range of elongation or compression
ratios close to unity.

For Gaussian statistics, the relation between the average
anisotropy tensor and the deviator of the average stress
tensor is linear

1\/0 1 VO
D= L0 gevipy = L 20 p 7
537 9V® = 507 (79

Stress difference, v,<Ap”**>/kT

2 . . . . . . . . .
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Fig. 6. Reduced normal stress difference, vU(Ap(3’2))/kT, vs. elongation ratio

A3, at fixed values of the elongation ratio A, (indicated). Computed from
Eq. (52) with the non-Gaussian distribution of chain end-to-end vectors.
N = 100.
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Fig. 7. The map of global orientation anisotropy characteristic, ||D|, in the
space of biaxial deformations. Straight dashed lines indicate points of
uniaxial deformation corresponding to, respectively, x|, x,, and x;-axes.

and
_ 1 VO . 1 +
f= 3 ﬁ[(l’sﬁ 5(@11) <P22>)]
_ L v 6 32)
= 10 %T «Ap™7) +(Ap7) (80)

The map of global orientation anisotropy |D| in the plane of
variables A, A5 of isochoric biaxial deformation (A;AyA; =
1) is shown in Fig. 7, and the map of stress anisotropy ||P|| in
Fig. 8. Straight dashed lines in the figures indicate points of
uniaxial deformation along x;, x,, or x3-axis. The maps are
symmetrical with respect to the line A; = A3 which corre-
sponds to uniaxial stretch (or compression) along x,-axis.
A characteristic feature of the maps is nearly constant
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Fig. 8. The map of global dimensionless stress anisotropy, vo|[P|/kT, in the
space of biaxial deformations. For dashed lines see Fig. 7.
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Fig. 9. Global orientation—stress anisotropy in uniaxial stretch, calendering,
and biaxial deformation at fixed stretch ratios (indicated).

global stress and orientation anisotropy in the entire range of
stretch ratio A;, at fixed stretch ratio in the perpendicular
direction, A; = const, providing that A; < A;. At the point of
equal stretches, A; = A;, the anisotropy behavior changes
and with increasing A; above the fixed A; value, the aniso-
tropy characteristics monotonically increase. Global
anisotropy increases with increasing stretch ratio along the
direction of dominating stretch, A; > A;. Such a behavior
does not concern calendering, A; = 1.

In the case of uniaxial deformation or calendaring, where
the deformation lines traverse the point A; = A, = A3 =1,
monotonic increase of the global anisotropies |[D| and ||P|
with increasing deformation is predicted, without any range
of flattening.

Uniaxial stretch provides the highest orientational
response to the stress, as shown in Fig. 9. Calendering, A; =
1, although less effective than the uniaxial deformation,
dominates the biaxial deformation at A; > 1. Both deforma-
tions, uniaxial stretch and calendering, show a non-linear,
monotonic increase in the orientation anisotropy with
increasing stress anisotropy.

Such a monotonic behavior is disturbed for biaxial
deformations at the fixed stretch ratio exceeding unity,
Ay > 1. This is clearly shown in Fig. 9 in the case of
Ay = 6 and 8. Monotonic increase of these plots starts from
the point of equal stretch ratios. For stretch ratio below the
fixed A; value, the orientation—stress anisotropy relation
concerns much narrower stress anisotropy range, and
shows quite a different behavior. Within this range, stress
anisotropy and orientation anisotropy both decrease with
increasing stretch ratio A;, and at the point of equal
stretches, A; = A;, merge the line of monotonic increase.

7. Conclusions

Axial orientation factor increases monotonically with
axial stretching, and it is reduced by transversal stretching

(A3 reduces with A, and vice versa). Axial stretching is
more effective for axial segmental orientation than the
transversal one.

Maps of global orientation and stress anisotropy in biaxial
deformation indicate nearly constant values of both charac-
teristics in the range of stretch ratios not exceeding the
stretch ratio in the transversal direction. Roles of the
deformation ratios change at the point of equivalence. By
increasing the stretch ratio above that in the transversal
direction, a non-linear, monotonic increase in the anisotropy
characteristic is predicted.

Any application of transversal stretching reduces the
anisotropy continuously, from the uniaxial deformation
geometry, throughout calendering, up to any perpendicular
stretch ratio above unity.

Difference of normal stresses between the two stretch
directions is stronger than the stress difference in the
perpendicular free plane. Both stress differences monotoni-
cally increase with increasing elongation ratios.

Gaussian chain statistics imply normal stress differences
proportional to the difference of square deformation ratios
reduced by the number of segments in a chain, (/\j2 - /\,-2)/N ,
and the relation between the average tensors of orientation
and stress is linear.

Significant deviation of stresses from the Gaussian model
are predicted at higher deformations, and convergence to
Gaussian behavior is seen in a relatively narrow range of
small stresses and deformations.
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